Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predicting language outcome and recovery after stroke: the PLORAS system

Abstract

The ability to comprehend and produce speech after stroke depends on whether the areas of the brain that support language have been damaged. Here, we review two different ways to predict language outcome after stroke. The first depends on understanding the neural circuits that support language. This model-based approach is a challenging endeavor because language is a complex cognitive function that involves the interaction of many different brain areas. The second approach, by contrast, does not require an understanding of why a lesion impairs language; instead, predictions are made on the basis of the recovery of previous patients with the same lesion. This approach requires a database that records the speech and language capabilities of a large population of patients who have, collectively, incurred a comprehensive range of focal brain lesions. In addition, a system is required that converts an MRI scan from a new patient into a three-dimensional description of the lesion and compares this lesion against all others on the database. The outputs of this system are the longitudinal language outcomes of corresponding patients in the database. This approach will provide the patient with a range of probable recovery patterns over a variety of language measures.

Key Points

  • Currently, no method exists to accurately predict recovery from aphasia after stroke

  • Many factors influence recovery, but the main determinant is lesion site

  • We introduce a new system, PLORAS (Predicting Language Outcome and Recovery After Stroke), to predict language outcome on the basis of lesion site

  • Predictive validity of this system will depend on collaborative efforts to develop an international database

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain activation during speech processing and predicted effects of lesions.
Figure 2: Procedures and database needed to estimate recovery of language after brain damage.

Similar content being viewed by others

References

  1. Sanai, N., Mirzadeh, Z. & Berger, M. S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 358, 18–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Caplan, D., Waters, G., Dede, G., Michaud, J. & Reddy, A. A study of syntactic processing in aphasia II: neurological aspects. Brain Lang. 101, 151–177 (2007).

    Article  PubMed  Google Scholar 

  3. Rijntjes, M. Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr. Opin. Neurol. 19, 76–83 (2006).

    Article  PubMed  Google Scholar 

  4. Lazar, R. M. & Antoniello, D. Variability in recovery from aphasia. Curr. Neurol. Neurosci. Rep. 8, 497–502 (2008).

    Article  PubMed  Google Scholar 

  5. Crosson, B. et al. Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol. Rev. 17, 157–177 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marsh, E. B. & Hillis, A. E. Recovery from aphasia following brain injury: the role of reorganization. Prog. Brain Res. 157, 143–156 (2006).

    Article  PubMed  Google Scholar 

  7. Mesulam, M. et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann. Neurol. 63, 709–719 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mesulam, M. M. Slowly progressive aphasia without generalized dementia. Ann. Neurol. 11, 592–598 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Hodges, J. R. & Patterson, K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 6, 1004–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Bright, P., Moss, H. E., Stamatakis, E. A. & Tyler, L. K. Longitudinal studies of semantic dementia: the relationship between structural and functional changes over time. Neuropsychologia 46, 2177–2188 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, S. M. et al. Automated MRI-based classification of primary progressive aphasia variants. Neuroimage 47, 1558–1567 (2009).

    Article  PubMed  Google Scholar 

  12. Rosen, H. J. et al. Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology 67, 1752–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech) [French]. Bull. Soc. Anat. Paris 6, 330–357 (1861).

    Google Scholar 

  14. Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T. & Cabanis, E. A. Paul Broca's historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130, 1432–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Berker, E. A., Berker, A. H. & Smith, A. Translation of Broca's 1865 report. Localization of speech in the third left frontal convolution. Arch. Neurol. 43, 1065–1072 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Wernicke, C. Der Aphasiche Symptomenkomplex (Cohen and Weigert, Breslau, 1874).

    Google Scholar 

  17. Bogen, J. E. & Bogen, G. M. Wernicke's region—where is it? Ann. NY Acad. Sci. 280, 834–843 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Whitaker, H. A. & Etlinger, S. C. Theodor Meynert's contribution to classical 19th century aphasia studies. Brain Lang. 45, 560–471 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Thomson, A. D. et al. Wernicke's encephalopathy revisited. Translation of the case history section of the original manuscript by Carl Wernicke 'Lehrbuch der Gehirnkrankheiten fur Aerzte and Studirende' (1881) with a commentary. Alcohol Alcohol. 43, 174–179 (2008).

    Article  PubMed  Google Scholar 

  20. Keller, S. S., Crow, T., Foundas, A., Amunts, K. & Roberts, N. Broca's area: nomenclature, anatomy, typology and asymmetry. Brain Lang. 109, 29–48 (2009).

    Article  PubMed  Google Scholar 

  21. Naeser, M., Helm-Estabrooks, N. & Haas, G. Relationship between lesion extent in Wernicke's area on computed tomographic scan and predicting recovery of comprehension in Wernicke's aphasia. Arch. Neurol. 44, 73–82 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Wise, R. J. et al. Separate neural subsystems within 'Wernicke's area'. Brain 124, 83–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Tyler, K. L. & Malessa, R. The Goltz–Ferrier debates and the triumph of cerebral localizationalist theory. Neurology 55, 1015–1024 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Mohr, J. P. et al. Broca aphasia: pathologic and clinical. Neurology 28, 311–324 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Marie, P. Aphasia revisited: the third left frontal convolution does not play any specific role in language function [French]. Brain Medicale 26, 241–247 (1906).

    Google Scholar 

  26. Fridriksson, J., Bonilha, L. & Rorden, C. Severe Broca's aphasia without Broca's area damage. Behav. Neurol. 18, 237–238 (2007).

    Article  PubMed  Google Scholar 

  27. Schmithorst, V. J., Holland, S. K. & Plante, E. Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. Neuroimage 29, 254–266 (2006).

    Article  PubMed  Google Scholar 

  28. Schaffler, L., Luders, H. O., Dinner, D. S., Lesser, R. P. & Chelune, G. J. Comprehension deficits elicited by electrical stimulation of Broca's area. Brain 116, 695–715 (1993).

    Article  PubMed  Google Scholar 

  29. Davis, C. et al. Speech and language functions that require a functioning Broca's area. Brain Lang. 105, 50–58 (2008).

    Article  PubMed  Google Scholar 

  30. Rogalsky, C., Pitz, E., Hillis, A. E. & Hickok, G. Auditory word comprehension impairment in acute stroke: relative contribution of phonemic versus semantic factors. Brain Lang. 107, 167–169 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blank, S. C., Scott, S. K., Murphy, K., Warburton, E. & Wise, R. J. S. Speech production: Wernicke, Broca and beyond. Brain 125, 1829–1838 (2002).

    Article  PubMed  Google Scholar 

  32. Kreisler, A. et al. The anatomy of aphasia revisited. Neurology 54, 1117–1123 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Willmes, K. & Poeck, K. To what extent can aphasic syndromes be localized? Brain 116, 1527–1540 (1993).

    Article  PubMed  Google Scholar 

  34. Signoret, J. L., Castaigne, P., Lhermitte, F., Abelanet, R. & Lavorel, P. Rediscovery of Leborgne's brain: anatomical description with CT scan. Brain Lang. 22, 303–319 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Rorden, C. & Karnath, H. O. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat. Rev. Neurosci. 5, 813–819 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Rorden, C., Fridriksson, J. & Karnath, H. O. An evaluation of traditional and novel tools for lesion behavior mapping. Neuroimage 44, 1355–1362 (2009).

    Article  PubMed  Google Scholar 

  37. Awad, M., Warren, J. E., Scott, S. K., Turkheimer, F. E. & Wise, R. J. S. A common system for the comprehension and production of narrative speech. J. Neurosci. 27, 11455–11464 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newhart, M., Ken, L., Kleinman, J. T., Heidler-Gary, J. & Hillis, A. E. Neural networks essential for naming and word comprehension. Cogn. Behav. Neurol. 20, 25–30 (2007).

    Article  PubMed  Google Scholar 

  39. Hillis, A. E. Aphasia: progress in the last quarter of a century. Neurology 69, 200–213 (2007).

    Article  PubMed  Google Scholar 

  40. Hillis, A. E. et al. Re-examining the brain regions crucial for orchestrating speech articulation. Brain 127, 1479–1487 (2004).

    Article  PubMed  Google Scholar 

  41. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Seghier, M. L., Lee, H. L., Schofield, T., Ellis, C. L. & Price, C. J. Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words. Neuroimage 42, 1226–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Kherif, F., Josse, G., Seghier, M. L. & Price, C. J. The main sources of inter-subject variability in neuronal activation for reading aloud. J. Cogn. Neurosci. 21, 654–668 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Penfield, W. & Roberts, L. Speech and Brain-Mechanisms (Princeton University Press, Princeton, 1959).

    Google Scholar 

  45. Crosson, B. Subcortical functions in language: a working model. Brain Lang. 25, 257–292 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Kuljic-Obradovic, D. C. Subcortical aphasia: three different language disorder syndromes? Eur. J. Neurol. 10, 445–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Radanovic, M. & Scaff, M. Speech and language disturbances due to subcortical lesions. Brain Lang. 84, 337–352 (2003).

    Article  PubMed  Google Scholar 

  48. Alexander, M. P., Naeser, M. A. & Palumbo, C. L. Correlations of subcortical CT lesion sites and aphasia profiles. Brain 110, 961–991 (1987).

    Article  PubMed  Google Scholar 

  49. Kumral, E., Evyapan, D. & Balkir, K. Acute caudate vascular lesions. Stroke 30, 100–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Ackermann, H., Mathiak, K. & Riecker, A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 6, 202–213 (2007).

    Article  PubMed  Google Scholar 

  51. Richter, S. et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J. Neurol. 254, 1193–1203 (2007).

    Article  PubMed  Google Scholar 

  52. Hofmann, J., Kotz, S. A., Marschhauser, A., Yves von Cramon, D. & Friederici, A. D. Lesion-site affects grammatical gender assignment in German: perception and production data. Neuropsychologia 45, 954–965 (2007).

    Article  PubMed  Google Scholar 

  53. Amici, S. et al. Performance in specific language tasks correlates with regional volume changes in progressive aphasia. Cogn. Behav. Neurol. 20, 203–211 (2007).

    Article  PubMed  Google Scholar 

  54. Amici, S. et al. Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. J. Neurosci. 27, 6282–6290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bates, E. et al. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6, 448–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Baldo, J. V., Schwartz, S., Wilkins, D. & Dronkers, N. F. Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J. Int. Neuropsychol. Soc. 12, 896–900 (2006).

    Article  PubMed  Google Scholar 

  57. Baldo, J. V. & Dronkers, N. F. Neural correlates of arithmetic and language comprehension: a common substrate? Neuropsychologia 45, 229–235 (2007).

    Article  PubMed  Google Scholar 

  58. Borovsky, A., Saygin, A. P., Bates, E. & Dronkers, N. F. Lesion correlates of conversational speech production deficits. Neuropsychologia 45, 2525–2533 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D. J., Redfern, B. B. & Jaeger, J. J. Lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145–177 (2004).

    Article  PubMed  Google Scholar 

  60. Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384, 159–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Kinkingnéhun, S. et al. A novel approach to clinical–radiological correlations: Anatomo-Clinical Overlapping Maps (AnaCOM): method and validation. Neuroimage 37, 1237–1249 (2007).

    Article  PubMed  Google Scholar 

  62. Saygin, A. P., Wilson, S. M., Dronkers, N. F. & Bates, E. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42, 1788–1804 (2004).

    Article  PubMed  Google Scholar 

  63. Specht, K. et al. Joint independent component analysis of structural and functional images reveals complex patterns of functional reorganisation in stroke aphasia. Neuroimage 47, 2057–2063 (2009).

    Article  PubMed  Google Scholar 

  64. Wilson, S. M. & Saygin, A. P. Grammaticality judgment in aphasia: deficits are not specific to syntactic structures, aphasic syndromes, or lesion sites. J. Cogn. Neurosci. 16, 238–252 (2004).

    Article  PubMed  Google Scholar 

  65. Broca, P. Localization of speech in the third left frontal convolution [French]. Bull. Soc. Anthropol. 6, 337–393 (1865).

    Google Scholar 

  66. Naeser, M. A. & Hayward, R. W. Lesion localization in aphasia with cranial computed tomography and the Boston Diagnostic Aphasia Examination. Neurology 28, 545–551 (1978).

    Article  CAS  PubMed  Google Scholar 

  67. Naeser, M. A., Palumbo, C. L., Helm-Estabrooks, N., Stiassny-Eder, D. & Albert, M. L. Severe non-fluency in aphasia: role of the medial subcallosal fasciculus plus other white matter pathways in recovery of spontaneous language. Brain 112, 1–38 (1989).

    Article  PubMed  Google Scholar 

  68. Basso, A., Lecours, A. R., Moraschini, S. & Vanier, M. Anatomoclinical correlations of the aphasias as defined through computerized tomography: exceptions. Brain Lang. 26, 201–229 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Murdoch, B. E., Afford, R. J., Ling, A. R. & Ganguley, B. Acute computerized tomographic scans: their value in the localization of lesions and as prognostic indicators in aphasia. J. Commun. Disord. 19, 311–345 (1986).

    Article  CAS  PubMed  Google Scholar 

  70. Kertesz, A., Harlock, W. & Coates, R. Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain Lang. 8, 34–50 (1979).

    Article  CAS  PubMed  Google Scholar 

  71. Schiff, H. B., Alexander, M. P., Naeser, M. A. & Galaburda, A. M. Aphemia. Clinical–anatomic correlations. Arch. Neurol. 40, 720–727 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. Alexander, M. P., Naeser, M. A. & Palumbo, C. L. Broca's area aphasias: aphasia after lesions including the frontal operculum. Neurology 40, 353–362 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Grodzinsky, Y. The neurology of syntax: language use without Broca's area. Behav. Brain Sci. 23, 1–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Godefroy, O. et al. Brain–behaviour relationships. Some models and related statistical procedures for the study of brain-damaged patients. Brain 121, 1545–1556 (1998).

    Article  PubMed  Google Scholar 

  75. Price, C. J. & Friston, K. J. Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–421 (2002).

    Article  PubMed  Google Scholar 

  76. Ruppin, E. & Reggia, J. A. Patterns of functional damage in neural network models of associative memory. Neural Comput. 7, 1105–1127 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, R., Hillis, A. E., Pawlak, M. & Herskovits, E. H. Voxelwise Bayesian lesion–deficit analysis. Neuroimage 40, 1633–1642 (2008).

    Article  PubMed  Google Scholar 

  78. Herskovits, E. H. & Gerring, J. P. Application of a data-mining method based on Bayesian networks to lesion–deficit analysis. Neuroimage 19, 1664–1673 (2003).

    Article  PubMed  Google Scholar 

  79. Mummery, C. J. et al. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann. Neurol. 47, 36–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).

    Article  PubMed  Google Scholar 

  81. Butler, C. R., Brambati, S. M., Miller, B. L. & Gorno-Tempini, M. The neural correlates of verbal and nonverbal semantic processing deficits in neurodegenerative disease. Cogn. Behav. Neurol. 22, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bates, E. et al. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6, 448–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Frank, R. J., Damasio, H. & Grabowski, T. J. Brainvox: an interactive, multimodal visualization and analysis system for neuroanatomical imaging. Neuroimage 5, 13–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Rorden, C. & Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200 (2000).

    Article  PubMed  Google Scholar 

  85. Rorden, C., Karnath, H. O. & Bonilha, L. Improving lesion–symptom mapping. J. Cogn. Neurosci. 19, 1081–1088 (2007).

    Article  PubMed  Google Scholar 

  86. Kimberg, D. Y., Coslett, H. B. & Schwartz, M. F. Power in voxel-based lesion–symptom mapping. J. Cogn. Neurosci. 19, 1067–1080 (2007).

    Article  PubMed  Google Scholar 

  87. Naeser, M. A. & Borod, J. C. Aphasia in left-handers: lesion site, lesion side, and hemispheric asymmetries on CT. Neurology 36, 471–488 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Naugle, R. I. & Raymond, M. J. Neuropsychological sequelae of stroke as a function of handedness. Percept. Mot. Skills 73, 555–562 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Arnold, M. et al. Age-dependent differences in demographics, risk factors, co-morbidity, etiology, management, and clinical outcome of acute ischemic stroke. J. Neurol. 255, 1503–1507 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Basso, A., Bracchi, M., Capitani, E., Laiacona, M. & Zanobio, M. E. Age and evolution of language area functions. A study on adult stroke patients. Cortex 23, 475–483 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Thomalla, G. et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22, 1767–1774 (2004).

    Article  PubMed  Google Scholar 

  92. Young, M. P., Hilgetaq, C. C. & Scannell, J. W. On imputing function to structure from the behavioural effects of brain lesions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 147–161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Keinan, A., Kaufman, A., Sachs, N., Hilgetaq, C. C. & Ruppin, E. Fair localization of function via multi-lesion analysis. Neuroinformatics 2, 163–168 (2004).

    Article  PubMed  Google Scholar 

  94. Seghier, M. L., Ramlackhansingh, A., Crinion, J., Leff, A. & Price, C. J. Lesion identification using unified segmentation–normalisation models and fuzzy clustering. Neuroimage 41, 1253–1266 (2008).

    Article  PubMed  Google Scholar 

  95. Warburton, E., Price, C. J., Swinburn, K. & Wise, R. J. S. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J. Neurol. Neurosurg. Psychiatry 66, 155–161 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hillis, A. E. et al. Hypoperfusion of Wernicke's area predicts severity of semantic deficit in acute stroke. Ann. Neurol. 50, 561–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Breier, J. I. et al. Spatiotemporal patterns of language-specific brain activity in patients with chronic aphasia after stroke using magnetoencephalography. Neuroimage 23, 1308–1316 (2004).

    Article  PubMed  Google Scholar 

  98. Meinzer, M. et al. Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage 39, 2038–2046 (2008).

    Article  PubMed  Google Scholar 

  99. Saur, D. et al. Dynamics of language reorganization after stroke. Brain 129, 1371–1384 (2006).

    Article  PubMed  Google Scholar 

  100. Heiss, W. D. & Thiel, A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 98, 118–123 (2006).

    Article  PubMed  Google Scholar 

  101. van der Zwan, A. & Hillen, B. Review of the variability of the territories of the major cerebral arteries. Stroke 22, 1078–1084 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, Z. H., Zhao, X. Q., Wang, C. X., Chen, H. Y. & Zhang, Y. M. Neuroanatomic correlation of the post-stroke aphasias studied with imaging. Neurol. Res. 30, 356–360 (2008).

    Article  PubMed  Google Scholar 

  103. Meindl, J. D. Beyond Moore's law: the interconnect era. Comput. Sci. Eng. 5, 20–24 (2003).

    Article  Google Scholar 

  104. Pozamantir, A., Lee, H., Chapman, J. & Prohovnik, I. Web-based multi-center data management system for clinical neuroscience research. J. Med. Syst. 34, 25–33 (2010).

    Article  PubMed  Google Scholar 

  105. Bandettini, P. A. What's new in neuroimaging methods? Ann. NY Acad. Sci. 1156, 260–293 (2009).

    Article  PubMed  Google Scholar 

  106. Crinion, J. et al. Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. Neuroimage 37, 866–875 (2007).

    Article  PubMed  Google Scholar 

  107. The Governing Council of the Organization for Human Brain Mapping. Neuroimaging databases. Science 292, 1673–1676 (2001).

  108. Amari, S. et al. Neuroinformatics: the integration of shared databases and tools towards integrative neuroscience. J. Integr. Neurosci. 1, 117–128 (2002).

    Article  PubMed  Google Scholar 

  109. Van Horn, J. D. & Toga, A. W. Is it time to re-prioritize neuroimaging databases and digital repositories? Neuroimage 47, 1720–1734 (2009).

    Article  PubMed  Google Scholar 

  110. National Data and Statistical Center. Traumatic Brain Injury Model Systems [online], (2010).

  111. Mueller, S. G. et al. Ways toward an early diagnosis in Alzheimer's disease: The Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1, 55–66 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Evans, A. C. & Brain Development Cooperative Group. The NIH MRI study of normal brain development. Neuroimage 30, 184–202 (2006).

    Article  PubMed  Google Scholar 

  113. Price, C. J., Mummery, C. J., Moore, C. J., Frackowiak, R. S. & Friston, K. J. Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. J. Cogn. Neurosci. 11, 371–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Price, C. J. & Friston, K. J. Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase 8, 345–354 (2002).

    Article  PubMed  Google Scholar 

  115. Dick, F. et al. What is involved and what is necessary for complex linguistic and nonlinguistic auditory processing: evidence from functional magnetic resonance imaging and lesion data. J. Cogn. Neurosci. 19, 799–816 (2007).

    Article  PubMed  Google Scholar 

  116. Vandenberghe, R. & Gillebert, C. R. Parcellation of parietal cortex: convergence between lesion–symptom mapping and mapping of the intact functioning brain. Behav. Brain Res. 199, 171–182 (2009).

    Article  PubMed  Google Scholar 

  117. Schnur, T. T. et al. Localizing interference during naming: convergent neuroimaging and neuropsychological evidence for the function of Broca's area. Proc. Natl Acad. Sci. USA 106, 322–327 (2009).

    Article  PubMed  Google Scholar 

  118. Molenberghs, P., Gillebert, C. R., Peeters, R. & Vandenberghe, R. Convergence between lesion–symptom mapping and functional magnetic resonance imaging of spatially selective attention in the intact brain. J. Neurosci. 28, 3359–3373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rudrauf, D., Mehta, S. G. & Grabowski, T. J. Disconnection's renaissance takes shape: formal incorporation in group-level lesion studies. Cortex 44, 1048–1096 (2008).

    Article  Google Scholar 

  120. Price, C. J. & Friston, K. J. Functional ontologies for cognition: the systematic definition of structure and function. Cogn. Neuropsychol. 22, 262–275 (2005).

    Article  PubMed  Google Scholar 

  121. Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L. & Sporns, O. Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5, e1000408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hodges, J. R., Patterson, K., Oxbury, S. & Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 115, 1783–1806 (1992).

    Article  PubMed  Google Scholar 

  124. Basso, A. How intensive/prolonged should an intensive/prolonged treatment be? Aphasiology 19, 975–984 (2005).

    Article  Google Scholar 

  125. Basso, A., Capitani, E. & Vignolo, L. A. Influence of rehabilitation on language skills in aphasic patients. A controlled study. Arch. Neurol. 36, 190–196 (1979).

    Article  CAS  PubMed  Google Scholar 

  126. Bhogal, S. K., Teasell, R. & Speechley, M. Intensity of aphasia therapy, impact on recovery. Stroke 34, 987–993 (2003).

    Article  PubMed  Google Scholar 

  127. Hinckley, J. J. & Carr, T. H. Comparing the outcomes of intensive and non-intensive context-based aphasia treatment. Aphasiology 19, 965–974 (2005).

    Article  Google Scholar 

  128. Holland, A. L., Fromm, D. S., DeRuyter, F. & Stein, M. Treatment efficacy: aphasia. J. Speech Lang. Hear. Res. 39, S27–S36 (1996).

    Article  CAS  Google Scholar 

  129. Pulvermuller, F. & Berthier, M. L. Aphasia therapy on a neuroscience basis. Aphasiology 22, 563–599 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Raymer, A. M., Kohen, F. P. & Saffell, D. Computerised training for impairments of word comprehension and retrieval in aphasia. Aphasiology 20, 257–268 (2006).

    Article  Google Scholar 

  131. Robey, R. R. A meta-analysis of clinical outcomes in the treatment of aphasia. J. Speech Lang. Hear. Res. 41, 172–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Cherney, L. R., Patterson, J. P., Raymer, A., Frymark, T. & Schooling, T. Evidence-based systematic review: effects of intensity of treatment and constraint-induced language therapy for individuals with stroke-induced aphasia. J. Speech Lang. Hear. Res. 51, 1282–1299 (2008).

    Article  PubMed  Google Scholar 

  133. Swinburn, K., Porter, G. & Howard, D. Comprehensive Aphasia Test (Psychology Press, London, 2004).

    Google Scholar 

  134. Moss, A. & Nicholas, M. Language rehabilitation in chronic aphasia and time postonset: a review of single-subject data. Stroke 37, 3043–3051 (2006).

    Article  PubMed  Google Scholar 

  135. Meinzer, M., Elbert, T., Djundja, D., Taub, E. & Rockstroh, B. Extending the constraint-induced movement therapy (CIMT) approach to cognitive functions: constraint-induced aphasia therapy (CIAT) of chronic aphasia. NeuroRehabilitation 22, 311–318 (2007).

    PubMed  Google Scholar 

  136. Pulvermuller, F. et al. Constraint-induced therapy of chronic aphasia after stroke. Stroke 32, 1621–1626 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Berthier, M. L. et al. A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 67, 1687–1689 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Berthier, M. L. et al. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann. Neurol. 65, 577–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Seniow, J., Litwin, M., Litwin, T., Lesniak, M. & Czlonkowska, A. New approach to the rehabilitation of post-stroke focal cognitive syndrome: effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J. Neurol. Sci. 283, 214–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Crinion, J. & Price, C. J. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain 128, 2858–2871 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy J. Price.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, C., Seghier, M. & Leff, A. Predicting language outcome and recovery after stroke: the PLORAS system. Nat Rev Neurol 6, 202–210 (2010). https://doi.org/10.1038/nrneurol.2010.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing